
M A N N I N G

A guide for Java developers

LASSE KOSKELA

Dottie
Text Box
S A M P L E C H A P T E R

Effective Unit Testing
by Lasse Koskela

Chapter 2

 Copyright 2013 Manning Publications

vii

brief contents

PART 1 FOUNDATIONS ..1

1 ■ The promise of good tests 3

2 ■ In search of good 15

3 ■ Test doubles 27

PART 2 CATALOG..45

4 ■ Readability 47

5 ■ Maintainability 78

6 ■ Trustworthiness 115

PART 3 DIVERSIONS ..137

7 ■ Testable design 139

8 ■ Writing tests in other JVM languages 156

9 ■ Speeding up test execution 170

15

In search of good

We’re on a journey of learning about good tests. We want to learn to identify good
tests, write good tests, and improve not-so-good tests so they become good tests—or
at least closer to being good tests. The question is, What makes a test “good”? What
are the magic ingredients? There are several aspects to consider, including:

 The test code’s readability and maintainability
 How the code is organized both within the project and within a given

source file
 What kinds of things a test is checking for
 How reliable and repeatable a test is
 How a test makes use of test doubles

We’ll be taking a closer look at all of these aspects in this chapter.
 The preceding list is far from being comprehensive. The range of factors that

may tip your test-quality scale either way is endless. Similarly, some of the factors

In this chapter
 What makes a test “good”?

 Testing relevant behavior

 The importance of reliable tests

16 CHAPTER 2 In search of good

don’t matter that much in all contexts. For some tests, their execution speed may be
crucial, whereas for other tests, being extremely focused is key.

 Furthermore, some of the quality of test code is in the eye of the beholder. As is the
case with code in general, personal preference has a role in defining what “good” is—
I’m not going to pretend that it wouldn’t. I’m also not going to pretend that I can
avoid my bias and preference from coming through in this book. Though I’ve tried to
steer away from pure matter-of-taste questions, you’ll find numerous sections where
my opinions clearly show through. I think that’s fine. After all, the best I can offer is
my honest (and opinionated) view of things based on my experience, shaped by the
wonderful individuals and software professionals from whom I’ve learned about code
and, specifically, about test code.

 With that disclaimer out of the way, let’s discuss some of those aspects of test qual-
ity and establish what about them makes them relevant to our interests.

2.1 Readable code is maintainable code
Yesterday I popped into our office on my way back from a consulting gig and struck up
a conversation with a colleague about an upcoming 1K competition that my colleague
was going to attend. Such competitions are an age-old tradition at demo parties —a
type of geek gathering where hackers gather at a massive arena for a long weekend
with their computers, sleeping bags, and energy drinks. Starting from the first gather-
ings, these hackers have faced off, wielding their mad skills at producing 3D anima-
tions with what most people would today consider antiquated hardware.

 A typical constraint for such animations has been size. In the case of the competi-
tion my colleague was preparing for, the name 1K refers to the maximum size of the
code compiled into a binary executable, which must be less than 1,024 bytes. Yes,
that’s right—1,024 bytes. In order to squeeze a meaningful program into such a tiny
space, the competitors need to resort to all kinds of tricks. For example, one common
trick to pack your code more tightly is to use the same name for many variables—
because the resulting code compresses a bit better like that. It’s crazy.

 What’s also crazy is the resulting code. When they’re done squeezing the code
down to 1,024 bytes, the source code is undecipherable. You can barely recognize
which programming language they’ve used! It’s essentially a write-only code base—
once you start squeezing and compressing, you can’t make functional changes
because you wouldn’t be able to tell what to edit where and how.

 To give you a vivid taste of what such code might look like, here’s an actual submis-
sion from a recent JS1k competition where the language of choice is JavaScript and it
needs to fit into 1,024 bytes:

<script>with(document.body.style){margin="0px";overflow="hidden";}
var w=window.innerWidth;var h=window.innerHeight;var ca=document.
getElementById("c");ca.width=w;ca.height=h;var c=ca.getContext("2d");
m=Math;fs=m.sin;fc=m.cos;fm=m.max;setInterval(d,30);function p(x,y,z){
return{x:x,y:y,z:z};}function s(a,z){r=w/10;R=w/3;b=-20*fc(a*5+t);
return p(w/2+(R*fc(a)+r*fs(z+2*t))/z+fc(a)*b,h/2+(R*fs(a))/z+fs(a)*b);
}function q(a,da,z,dz){var v=[s(a,z),s(a+da,z),s(a+da,z+dz),s(a,z+dz)]

17Readable code is maintainable code

;c.beginPath();c.moveTo(v[0].x,v[0].y);for(i in v)c.lineTo(v[i].x,v[i]
.y);c.fill();}var Z=-0.20;var t=0;function d(){t+=1/30.0;c.fillStyle=
"#000";c.fillRect(0,0,w,h);c.fillStyle="#f00";var n=30;var a=0;var da=
2*Math.PI/n;var dz=0.25;for(var z=Z+8;z>Z;z-=dz){for(var i=0;i<n;i++){
fog=1/(fm((z+0.7)-3,1));if(z<=2){fog=fm(0,z/2*z/2);}var k=(205*(fog*
Math.abs(fs(i/n*2*3.14+t))))>>0;k*=(0.55+0.45*fc((i/n+0.25)*Math.PI*5)
);k=k>>0;c.fillStyle="rgb("+k+","+k+","+k+")";q(a,da,z,dz);if(i%3==0){
c.fillStyle="#000";q(a,da/10,z,dz);}a+=da;}}Z-=0.05;if(Z<=dz)Z+=dz;}
</script>

Granted, that is a couple of magnitudes more extreme a situation than what you’d
find at a typical software company. But we’ve all seen code at work that makes our
brains hurt. Sometimes we call that kind of code legacy because we’ve inherited it from
someone else and now we’re supposed to maintain it—except that it’s so difficult that
our brains hurt every time we try to make sense of it. Maintaining such unreadable
code is hard work because we expend so much energy understanding what we’re look-
ing at. It’s not just that. Studies have shown that poor readability correlates strongly
with defect density.1

 Automated tests are a useful protection against defects. Unfortunately, automated
tests are also code and are also vulnerable to bad readability. Code that’s difficult to
read tends to be difficult to test, too, which leads to fewer tests being written. Further-
more, the tests we do write often turn out to be far from what we consider good tests
because we need to kludge our way around the awkwardly structured, difficult-to-
understand code with APIs and structures that aren’t exactly test-friendly.

 We’ve established (almost to the point of a rant) that code readability has a dire
impact on the code’s maintainability. Now what about the readability of test code?
How is that different, or is it any different? Let’s take a look at a not-so-far-fetched
example of unreadable test code, shown in this listing:

@Test
public void flatten() throws Exception {

Env e = Env.getInstance();
Structure k = e.newStructure();
Structure v = e.newStructure();
//int n = 10;
int n = 10000;
for (int i = 0; i < n; ++i) {

k.append(e.newFixnum(i));
v.append(e.newFixnum(i));

}
Structure t = (Structure) k.zip(e.getCurrentContext(),

new IObject[] {v}, Block.NULL_BLOCK);
v = (Structure) t.flatten(e.getCurrentContext());
assertNotNull(v);

}

1 Raymond P.L. Buse, Westley R. Weimer. “Learning a Metric for Code Readability.” IEEE Transactions on Soft-
ware Engineering, 09 Nov. 2009. IEEE computer Society Digital Library. IEEE Computer Society, http://
doi.ieeecomputersociety.org/10.1109/TSE.2009.70

Listing 2.1 Code doesn’t have to be complex to lack readability

http://doi.ieeecomputersociety.org/10.1109/TSE.2009.70
http://doi.ieeecomputersociety.org/10.1109/TSE.2009.70

18 CHAPTER 2 In search of good

What is this test checking? Would you say that it’s easy to decipher what’s going on
here? Imagine yourself being the new guy on this team—how long would it take you to
figure out the test’s intent? What kind of code forensics would you have to go through
to grok the situation if this test suddenly starts failing? Based on how I feel about that
hideous snippet of code, I’ll wager that you immediately identified a handful of things
that could be improved about the poor little test—and that readability is a common
theme with those improvements.

2.2 Structure helps make sense of things
I’ve had the pleasure and horror of seeing numerous code bases that weren’t full of
beautiful strides of genius flowing from one source file to the next. Some of them
never jumped to another source file because it was all there—all of the code and logic
triggered by, say, the submission of a web form would reside in a single source file. I’ve
had a text editor crash due to the size of a source file I foolishly tried to open. I’ve
seen a web application vomit an error because a JavaServer Pages file had grown so big
that the resulting byte code violated the Java class file specification. It’s not just that
structure would be useful—the lack of structure can be damaging.

 What’s common among most of these instances of never-ending source listings is
that nobody wanted to touch them. Even the simplest conceptual changes would be
too difficult to map onto the source code in front of you. There was no structure your
brain could rely on. Divide and conquer wasn’t an option—you had to juggle the
whole thing in your head or be prepared for a lot of contact between your forehead
and the proverbial brick wall.

 As illustrated by figure 2.1 you don’t want just any structure to help make sense of
things. You need structure that makes sense as such—one that’s aligned with the way
your brain and your mental models are prepared to slice and dice the world. Blindly
externalizing snippets of code into separate source files, classes, or methods does
reduce the amount of code you’re looking at a given point in time, thereby alleviating
the problem of overloading your brain. But it doesn’t get you much closer to isolating
and understanding the one aspect of the program’s logic that we’re interested in right
now. For that you need a structure that makes sense.

Code has no
structure

Nobody wants
to touch it...

Any change implies a
ght

Conceptual change is
hard to map into code

...but you have to

code will have
more structure...

...but is it useful structure?

Chop it up into
smaller chunks

Figure 2.1 It’s not just about having structure—it needs to be a useful structure.

19Structure helps make sense of things

When faced with monolithic, never-ending source listings, the obvious solution is to
chop them up into smaller pieces, extracting blocks of code into methods. You might
go from a huge 500-line method in one class to dozens of methods on 10 classes with
the average length dropping below 10 lines per method. That would introduce more
structure into the code—at least if you ask a compiler. You’d also be able to see whole
methods on your screen at once instead of scrolling back and forth.

 But if the boundaries for splitting up that monolith don’t make sense—if they
don’t map to the domain and your abstractions—we might be doing more harm than
good because the concepts might now be physically scattered farther from each other
than before, increasing the time you spend going back and forth between source files.
It’s simple. What matters is whether the structure of your code helps you locate the
implementation of higher-level concepts quickly and reliably.

 Test code is an excellent example of this phenomenon. Let’s say you have an appli-
cation that’s fairly well covered by an automated test—one automated test. Imagine
that this test exercises all of the application’s business logic and behavior through a
single monolithic test method that takes half an hour to execute. Now say that the test
eventually fails, as illustrated in figure 2.2, because you’re making a change in how
mailing addresses are represented internally in the application and you mess up some-
thing while you’re at it. There’s a bug. What happens next?

 I’d imagine it’s going to take a while to pinpoint the exact place in the test code
where your programming error manifests itself. There’s no structure in the test code
to help you see what affects what, where a certain object is instantiated, what the value
of a given variable is at the point where things fall apart, and so forth. Eventually,
when you’ve managed to identify and correct your mistake, you have no choice but to
run the whole test—all 30 minutes of it—to make sure that you really did fix the prob-
lem and that you didn’t break something else in the process.

 Continuing this thought experiment, fast-forwarding an hour or so, you’re about
to make another change. This time, having learned from your previous mistake,
you’re careful to make sure you’ve understood the current implementation in order
to ensure that you’ll make the right kind of change. How would you do that? By read-
ing the code, and especially perusing test code that shows you in concrete terms how
the production code is expected to behave. Except that you can’t find the relevant
parts of the test code because there’s no structure in place.

Monolithic test

30-minute wait time begins...

Programmer
error

Hey! It broke!

Figure 2.2 Long delay in feedback is a real productivity-killer

20 CHAPTER 2 In search of good

What you need are focused tests that are readable, accessible, and comprehensible so
that you can:

 Find test classes that are relevant for the task at hand
 Identify the appropriate test methods from those classes
 Understand the lifecycle of objects in those test methods

These are all things that you can get by paying attention to your tests’ structure and
making sure that it’s useful. Having a useful structure is hardly enough, of course.

2.3 It’s not good if it’s testing the wrong things
More than once I’ve concluded a journey of reading and debugging code to find the
cause for an undesirable system behavior at almost the same place I started looking. A
particularly annoying detail overlooked in such a bug-hunt is the contents of a test.
The first thing I tend to do when digging into code is to run all the tests to tell me
what’s working and what’s not. Sometimes I make the mistake of trusting what the
tests’ names tell me they’re testing. Sometimes it turns out that those tests are testing
something completely different.

 This is related to having a good structure—if a test’s name misrepresents what it
tests, it’s akin to driving with all the road signs turned the wrong way. You should be
able to trust your tests.

 A couple of years ago I was carrying out a code audit for a product that had been
under development for more than a decade. It was a big codebase and I could tell
from its structure that some parts were clearly newer than others. One of the things
that distinguished more recent code from the older was the presence of automated
tests. But I quickly found out that I couldn’t tell from the tests’ names what they were
supposed to verify and, looking closer, it turned out that the tests weren’t actually test-
ing what they promised to test. It wasn’t a Java codebase but I’ve taken the freedom to
translate a representative example to Java:

public class TestBmap {
@Test
public void mask() {

Bmap bmap = new Bmap();
bmap.addParameter(IPSEC_CERT_NAME);
bmap.addParameter(IPSEC_ACTION_START_DAYS, 0);
bmap.addParameter(IPSEC_ACTION_START_HOURS, 23);
assertTrue(bmap.validate());

}
}

Looking at this code you’ll immediately notice that the test’s name is less than perfect.
But on a closer look it turns out that whatever “mask” means for a “Bmap,” the test is
only checking that certain parameters are a valid combination. Whether the valida-
tion works is somewhat irrelevant if the actual behavior isn’t correct even when the
input is valid.

21Independent tests run easily in solitude

 There’s a lot to be said about testing the right things, but it’s also crucial to test
those right things the right way. Of particular importance from a maintainability point
of view is that your tests are checking for the intended behavior and not a specific
implementation. That’s a topic we’ll touch on in the next chapter, so let’s leave it at
that for now.

2.4 Independent tests run easily in solitude
There’s a lot to be said about tests, what they should or shouldn’t contain, what they
should or shouldn’t specify, and how they should be structured in the name of read-
ability. What goes on around tests sometimes plays an equally vital role.

 Human beings—our brains to be more exact—are enormously powerful informa-
tion processors. We can make seemingly instant evaluations of what’s going on in our
physical surroundings and react in a blink. We dodge that incoming snowball before
we even realize what we’re reacting to. These reactions are in our DNA. They’re behav-
ioral recipes that instruct our body to move when our senses observe a familiar pat-
tern. Over time our cookbook of these recipes grows in sophistication, and we’re soon
lugging around a complex network of interconnected patterns and behaviors.

 This happens at work, too. Exploring a foreign code base for the first time, we’ll
have formed a clear picture of the most prevalent conventions, patterns, code smells,
and pitfalls within 15 minutes. What makes this possible is our ability to recognize a
familiar pattern and be able to tell what else we’re likely to see nearby.

WHAT’S A CODE SMELL? A smell in code is a hint that something might be
wrong with the code. To quote the Portland Pattern Repository’s Wiki, “If
something smells, it definitely needs to be checked out, but it may not actu-
ally need fixing or might have to just be tolerated.”

For example, one of the first things I pay attention to when introducing myself to a
new codebase is the size of methods. If methods are long I know that there are a bunch
of other issues to deal with in those particular modules, components, or source files.
Another signal I’m tuning to is how descriptive the names of the variables, methods
and classes are.

 Specifically in terms of test code, I pay attention to the tests’ level of independence,
especially near architectural boundaries. I do this because I’ve found so many code
smells by taking a closer look at what’s going on in those boundaries, and I’ve learned
to be extra careful when I see dependencies to:

 Time
 Randomness
 Concurrency
 Infrastructure
 Pre-existing data
 Persistence
 Networking

22 CHAPTER 2 In search of good

What these things have in common is that
they tend to complicate what I consider
the most basic litmus test for a project’s
test infrastructure: can I check out a fresh
copy from version control to a brand new
computer I just unboxed, run a single
command, lean back, and watch a full
suite of automated tests run and pass?

 Isolation and independence are
important because without them it’s
much harder to run and maintain tests.
Everything a developer needs to do to
their system in order to run unit tests
makes it that much more burdensome.

 Whether you need to create an
empty directory in a specific location in
your filesystem, make sure that you have
a specific version of MySQL running at a
specific port number, add a database
record for the user that the tests use for
login, or set a bunch of environment
variables—these are all things that a
developer shouldn’t need to do. All of
these small things add up to increased
effort and weird test failures.2

 A characteristic of this type of depen-
dency is that things like the system clock
at the time of test execution or the next
value to come out from a random num-
ber generator are not in your control. As a
rule of thumb, you want to avoid erratic
test failures caused by such dependen-
cies. You want to put your code into a
bench vise and control everything 3by
passing it test doubles and otherwise iso-
lating the code to an environment that
behaves exactly like you need it to.

2 If you can’t find a way to avoid such manual configuration, at least make sure developers need to do it only
once.

3 If this sounds far-fetched, you should know that JUnit doesn’t promise to run test methods in any particular
order. In fact, several tests in the NetBeans project started breaking when Java 7 changed the order in which
declared methods are returned through Class#getDeclaredMethods(). Oops. I guess they didn’t have
independent tests...

Don’t rely on test order within a
test class
The general context for the advice of
not letting tests depend on each other
is that you should not let tests in one
class depend on the execution or out-
come of tests in another class. But it
really applies to dependencies within a
single test class, too.

The canonical example of this mistake
is when a programmer sets up the sys-
tem in a starting state in a @Before-
Class method and writes, say, three
consecutive @Test methods, each
modifying the system’s state, trusting
that the previous test has done its
part. Now, when the first test fails, all
of the subsequent tests fail, but that’s
not the biggest issue here—at least
you’re alerted to something being
wrong, right?

The real issue is when some of those
tests fail for the wrong reason. For
instance, say that the test framework
decides to invoke the test methods in
a different order. False alarm. The JVM
vendor decides to change the order in
which methods are returned through
the Reflection API. False alarm. The
test framework authors decide to run
tests in alphabetical order. False
alarm again.3

You don’t want false alarms. You don’t
want your tests failing when the behav-
ior they’re checking isn’t broken.
That’s why you shouldn’t intentionally
make your tests brittle by having them
depend on each other’s execution.

23Reliable tests are reliable

 One of the most unusual examples of a surprising test failure is a test that passes as
part of the whole test suite but fails miserably when it’s run alone (or vice versa).
Those symptoms reek of interdependent tests. They assume that another test is run
before they are, and that the other test leaves the system in a particular state. When
that assumption kicks you in the ankle, you have one hellish debugging session ahead.

 To summarize, you should be extra careful when writing tests for code that deals
with time, randomness, concurrency, infrastructure, persistence, or networking. As a
rule of thumb, you should avoid these dependencies as much as you can and localize
them into small, isolated units so that most of your test code doesn’t need to suffer
from the complications and you don’t have to be on your toes all the time—just in
those few places where you tackle the tricky stuff.

 So how would that look in practice? What exactly should you do? For example, you
could see if you can find a way to:

 Substitute test doubles for third-party library dependencies, wrapping them
with your own adapters where necessary. The tricky stuff is then encapsulated
inside those adapters that you can test separately from the rest of application
logic.

 Keep test code and the resources they use together, perhaps in the same
package.

 Let test code produce the resources it needs rather than keeping them separate
from the source code.

 Have your tests set up the context they need. Don’t rely on any other tests being
run before the one you’re writing.

 Use an in-memory database for integration tests that require persistence, as it
greatly simplifies the problem of starting tests with a clean data set. Plus, they’re
generally superfast to boot up.

 Split threaded code into asynchronous and synchronous halves, with all applica-
tion logic in a regular, synchronous unit of code that you can easily test without
complications, leaving the tricky concurrency stuff to a small, dedicated group
of tests.

Achieving test isolation can be difficult when working with legacy code that wasn’t
designed for testability and therefore doesn’t have the kind of modularity you’d like
to have. But even then, the gain is worth the effort of breaking those nasty dependen-
cies and making your tests independent from their environment and from each other.
After all, you need to be able to rely on your tests.

2.5 Reliable tests are reliable
In the previous section I said that sometimes a test is testing something completely dif-
ferent than what you thought it tests. What’s even more distracting is that sometimes
they don’t test a damn thing.

24 CHAPTER 2 In search of good

 A colleague used to call such tests happy tests, referring to a test happily executing a
piece of production code—possibly all of its execution paths—without a single asser-
tion being made. Yes, your test coverage reports look awesome as the tests are thor-
oughly executing every bit of code you’ve written. The problem is that such tests can
only fail if the production code being invoked throws an exception. You can hardly
rely on such tests to watch your back, can you? Especially if the programmers have had
a convention to encapsulate all of the test methods’ bodies into a try-catch.4 This
listing shows an example of one such bugger.

@Test
public void shouldRefuseNegativeEntries() {

int total = record.total();
try {

record.add(-1);
} catch (IllegalArgumentException expected) {

assertEquals(total, record.total());
}

}

Some tests are less likely to fail than others, and the previous listing is a prime example
of the other extreme, where the test is likely to never fail (and likely never has in the
past either). If you look carefully, you’ll notice that the test won’t fail even if add(-1)
doesn’t throw an exception as it’s supposed to.

 Tests that can hardly ever fail are next to useless. With that said, a test that passes
or fails intermittently is an equally blatant violation toward fellow programmers; see
figure 2.3.

 Some years ago I was consulting on a project and spent most of my days pair pro-
gramming with the client’s technical staff and other consultants. One morning I took
on a new task with my pair and ran the related test set as the first thing to do as usual.
My pair was intimately familiar with the codebase, having written a significant part of it,
and was familiar with its quirks, too. I noticed this when a handful of the tests failed on
the first run before we’d touched anything. What tipped me off was how my pair
responded to the test failure—he routinely started rerunning the tests again and again
until after four or five times all of the tests had passed at least once. I’m not 100% sure,
but I don’t think those particular tests all passed at the same time even once.

4 True story. I spent an hour removing them and the rest of the day fixing or deleting the failed tests that were
uncovered by my excavation.

Listing 2.2 Can you spot the flaw in this test?

Test
never
fails

Test
always

fails

Diminishing value Pure noise

"Happy" tests Random tests

Where's the sweet spot?

Figure 2.3 Tests have
little value if they’ve
never failed or if they’re
failing all the time.

25Every trade has its tools and tests are no exception

As flabbergasted as I was, I realized that I was looking at a bunch of tests that repre-
sented a whole different cast of unreliable tests. These particular tests turned out to be
failing randomly because the code under test incorporated nondeterministic logic
that screwed up the tests some 50% of the time. In addition to the use of pseudo-ran-
dom generators in the code being tested, a common cause for such intermittently fail-
ing behavior is the use of time-related APIs. My favorite is a call to
System.currentTimeMillis(), but a close second is a ubiquitous Thread

.sleep(1000) sprinkled throughout in an attempt to test asynchronous logic.
 In order to rely on your tests, they need to be repeatable. If I run a test twice, it must

give me the same result. Otherwise, I’ll have to resort to manual arbitration after every
build I make because there’s no way to tell whether 1250/2492 tests means that every-
thing’s all right or that all hell’s broken loose with that last edit. There’s no way to tell.

 If your logic incorporates bits that are asynchronous or dependent on current
time, be sure to isolate those bits behind an interface you can use for substituting a
“test double” and make the test repeatable—a key ingredient of a test being reliable.

2.6 Every trade has its tools and tests are no exception
What’s this test double I speak of? If you don’t have test doubles in your programmer’s
toolkit, you’re missing out on a lot of testing power. Test double is an umbrella term for
what some programmers have come to know as stubs, fakes, or mocks (which is short for
mock object). Essentially they’re objects that you substitute for the real implementa-
tion for testing purposes. See figure 2.4.

 You could say that test doubles are a test-infected programmer’s best friend. That’s
because they facilitate many improvements and provide many new tools for our dis-
posal, such as:

 Speeding up test execution by simplifying the code that would otherwise be
executed

 Simulating exceptional conditions that would otherwise be difficult to create
 Observing state and interaction that would otherwise be invisible to your test

code

There’s a lot more to test doubles than this and we’ll come back to this topic in more
detail in the next chapter. But test doubles aren’t the only tool of the trade for writing
good automated tests.

Duck

Campbell Duck Crested Duck Test Double Duck

Figure 2.4 A test double for a duck looks just like a duck and quacks almost like a
duck—but certainly isn’t a real duck.

26 CHAPTER 2 In search of good

 Perhaps the most essential tool of the trade is a test framework such as JUnit. I still
remember some of my first attempts at getting a piece of code to work like I wanted it
to. When I messed up and got stuck, I’d uncomment half a dozen statements that
would print to the console and relaunch the program so I could analyze the console
output and figure out what I’d broken and how.

 It wasn’t more than a couple of months into my professional career when I first
bumped into this same practice being upheld by commercial software developers. I
trust that I don’t need to point out how incredibly unprofessional and wasteful such a
practice is compared to writing automated, repeatable tests with tools like JUnit.

 In addition to a proper test framework and test doubles, my top three tools of the
trade for software developers writing automated tests include one more tool in the
chain—the build tool. Whatever your build process looks like, whichever tool or tech-
nology your build scripts use under the hood, there’s no good excuse for not integrat-
ing your automated tests as part of that build.

2.7 Summary
In this chapter we’ve established several coarse properties for what a good test is. We
noted that these things are dependent on context and that there are few absolute
truths when it comes to what makes a test “good.” We did identify a number of issues
that generally have a major impact on how good or appropriate—how fit for its pur-
pose—an automated test is.

 We began by noting that one of the essential virtues for a test is its readability,
because lacking the ability to be read and understood, test code becomes a mainte-
nance problem that solves itself very soon—by getting deleted because it’s too costly to
maintain.

 We then pointed out how test code’s structure makes it usable, allowing the pro-
grammer to quickly find their way to the right pieces and helping the programmer
understand what’s going on—a direct continuation on readability.

 Next we shed light on how tests sometimes test the wrong things and how that can
create problems by leading you down the wrong path or by muddying the waters, hid-
ing the test’s actual logic and making the test itself unreadable.

 To conclude the underlying theme of tests sometimes being unreliable, we identi-
fied some of the common reasons for such unreliability and how important it is for
tests to be repeatable.

 Lastly, we identified three essential tools of the trade for writing automated tests—
a test framework, an automated build that runs tests written with that framework, and
test doubles for improving your tests and ability to test. This third topic is important
enough that we’ve dedicated the next chapter to discussing the use of test doubles for
writing good tests.

T
est the components before you assemble them into a full
application, and you’ll get better soft ware. For Java devel-
opers, there’s now a decade of experience with well-craft ed

tests that anticipate problems, identify known and unknown
dependencies in the code, and allow you to test components
both in isolation and in the context of a full application.

Effective Unit Testing teaches Java developers how to write unit
tests that are concise, expressive, useful, and maintainable.
Off ering crisp explanations and easy-to-absorb examples, it
introduces emerging techniques like behavior-driven
development and specifi cation by example.

What’s Inside
A thorough introduction to unit testing
Choosing best-of-breed tools
Writing tests using dynamic languages
Effi cient test automation

Programmers who are already unit testing will learn the current
state of the art. Th ose who are new to the game will learn
practices that will serve them well for the rest of their career.

Lasse Koskela is a coach, trainer, consultant, and programmer.
He hacks on open source projects, helps companies improve
their productivity, and speaks frequently at conferences
around the world. Lasse is the author of Test Driven, also
published by Manning.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/EffectiveUnitTesting

$39.99 / Can $41.99 [INCLUDING eBOOK]

Effective Unit Testing
JAVA/TESTING

“A fantastic, defi nitive guide.
It will boost your

productivity and deployment
eff ectiveness.”

—Roger Cornejo, GlaxoSmithKline

“Changed the way I look at
the Java development process.

Highly recommended.”—Phil Hanna, SAS Institute, Inc.

“A common sense approach
 to writing high quality code.”—Frank Crow

Sr. Progeny Systems Corp.

“Extremely useful, even if
 you write .NET code.”
—J. Bourgeois, Freshly Coded

“If unit tests are a nightmare
 for you, read this book!”

—Franco Lombardo
Molteni Informatica

M A N N I N G

SEE INSERT Lasse Koskela

