

MEAP Edition
Manning Early Access Program

Spring in Action
Fifth Edition

Covers Spring 5.0

Version 4

Copyright 2018 Manning Publications

For more information on this and other Manning titles go to

www.manning.com

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/spring-in-action-fifth-edition

http://www.manning.com
https://forums.manning.com/forums/spring-in-action-fifth-edition

welcome
Thank you for purchasing the MEAP for Spring in Action, Fifth Edition.

Can you believe that? The fifth edition of Spring in Action! Spring has come a long
way over the course of the last four editions and I'm so excited to have a chance to bring
the latest and greatest stuff that Spring has to offer in this all new edition. This book should
be a valuable resource regardless of whether you're completely new to Spring or are
reading this book to brush up on the newest features.

I've attempted to make this edition follow a hands-on, narrative style; leading you
through a journey of building an application, starting with initializing the project and going
all the way through to how to ready the application for deployment.

We're releasing the first two chapters to start. In chapter 1 you'll learn how to kick start
your Spring project leveraging the Spring Initializr and Spring Boot. And before chapter 1
concludes, you'll already have a complete, albeit basic application that is ready to run.

In chapter 2, we'll build on that foundation by using Spring MVC to develop additional
browser-based functionality. We'll see how to handle simple web requests, process form
submissions, and validate what the user enters.

Throughout the remaining chapters in part 1, we'll see how to use Spring to persist and
retrieve data, secure our web application, and then examine how to take advantage of
configuration properties to fine-tune how our application components behave.

Looking even further ahead, part 2 of the book will see us integrating our application
with other applications. In part 3 we'll dig into Spring 5's new support for reactive
programming and revisit some previously developed components to make them more
reactive. In part 4 we'll adapt the application to be cloud-native by decomposing it into
microservices, leveraging Spring Cloud to bring them together. Finally, in part 5, we'll see
how to prepare our application for deployment and see how Spring applications are
deployed in a variety of runtime settings.

We hope to have frequent updates to the book, every few weeks, whether that is new
chapters or updates to existing chapters. As you are reading, I invite you to visit the Author
Online forum to ask questions and leave comments. Your feedback is truly appreciated and
I find it valuable in guiding me as I write it.

—Craig Walls

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/spring-in-action-fifth-edition

https://forums.manning.com/forums/spring-in-action-fifth-edition

brief contents
PART 1 : FOUNDATIONAL SPRING

 1 Booting Spring
 2 Developing web applications
 3 Working with data
 4 Securing Spring
 5 Working with configuration properties

PART 2: INTEGRATED SPRING
 6 Giving Spring some REST
 7 Consuming REST services
 8 Messaging
 9 Working with data in real-time and batch

PART 3: REACTIVE SPRING
10 Introducing Reactor
11 Working with Reactive REST APIs
12 Persisting data reactively
13 Securing Reactive Spring

PART 4: CLOUD-NATIVE SPRING
14 Discovering services
15 Centralizing configuration
16 Failing gracefully

PART 5: DEPLOYED SPRING
17 Monitoring and instrumenting for production
18 Deploying Spring applications

APPENDIXES
A Bootstrapping and running Spring projects
B Wiring Beans

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/spring-in-action-fifth-edition

https://forums.manning.com/forums/spring-in-action-fifth-edition

1
 This chapter covers:
 • Spring and Spring Boot essentials

 • Initializing a Spring project

 • An overview of the Spring landscape

Although the Greek philosopher Heraclitus wasn’t well known as a software developer,
he seemed to have a good handle on the subject. He has been quoted to have said "The
only constant is change". That statement captures a foundational truth of software
development. The way we develop applications today is different than it was a year
ago, 5 years ago, 10 years ago, and certainly 15 years ago when a very initial form of
the Spring Framework was introduced in Rod Johnson’s book, Expert One-on-One
J2EE Design and Development 1 .

Back then, the most common type of applications being developed were browser-based
web applications, backed by relational databases. While that type of development is
still relevant, and Spring is well-equipped for those kinds of applications, we’re now
also interested in developing applications composed of microservices destined for the
cloud that persist data in a variety of databases. And a new interest in reactive
programming aims to provide greater scalability and improved performance with non-
blocking operations.

As software development evolved, the Spring Framework evolved with it to address
modern development concerns, including microservices and reactive programming.
Spring has also set out to simplify its own development model with the introduction of

1 www.wiley.com/WileyCDA/WileyTitle/productCd-0764543857.html

Booting Spring

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/spring-in-action-fifth-edition

1

http://www.wiley.com/WileyCDA/WileyTitle/productCd-0764543857.html
https://forums.manning.com/forums/spring-in-action-fifth-edition

Spring Boot.

Whether you’re developing a simple database-backed web application or constructing a
modern application built around microservices, Spring is the framework that will help
you achieve your goals. This chapter is your first step in a journey through modern
application development with Spring.

1.1 What is Spring?
I know that you’re probably itching to start writing a Spring application, and I assure
you that before this chapter ends, we’ll have developed a simple Spring application.
But first, let me set the stage with a few basic Spring concepts that will help you
understand what makes Spring tick.

Any non-trivial application is composed of many components, each responsible for
their piece of the overall application functionality and coordinating with other
components to get their job done. When the application is run, those components
somehow need to be created and introduced to each other.

At it’s very core, Spring offers a container, often referred to as the Spring application
context, that creates and manages application components. These components,
or beans, are wired together inside of the Spring application context to make a
complete application, much like bricks, mortar, timber, nails, plumbing, and wiring are
bound together to make a house.

The act of wiring beans together is based on a pattern known as dependency injection.
Rather than have components create and maintain the lifecycle of other components
that they depend upon, a dependency-injected application relies on a separate entity
(the container) to create and maintain all components and inject those components into
the components that need them, typically through constructor arguments or property
accessor methods.

For example, suppose that among an application’s many components, there are two
which are an inventory service (for fetching inventory levels) and a product service
(which provides basic product information). The product service depends on the
inventory service to be able to provide a complete set of information about
products. Figure 1.1 illustrates the relationships between these beans and the Spring
application context.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/spring-in-action-fifth-edition

2

https://forums.manning.com/forums/spring-in-action-fifth-edition

Figure 1.1. Application components are managed and injected into each other by the Spring
application context.

On top of its core container, Spring and a full portfolio of related libraries offer a web
framework, a variety of data persistence options, a security framework, integration
with other systems, runtime monitoring, microservice support, a reactive programming
model, and many other features that are necessary for modern application development.

Historically, the way you would guide Spring’s application context to wire beans
together was with one or more XML files that described the components and their
relationship to other components. For example, the following XML declares two beans,
an InventoryService bean and a ProductService bean and wires
the InventoryService bean into the ProductService via a constructor argument:

<bean id="inventoryService"
 class="com.example.InventoryService" />

<bean id="productService"
 class="com.example.ProductService" />
 <constructor-arg ref="inventoryService" />
</bean>

In more recent versions of Spring, however, a Java-based configuration is more
common. The following configuration class is equivalent to the XML configuration:

@Configuration
public class ServiceConfiguration {
 @Bean
 public InventoryService inventoryService() {
 return new InventoryService();
 }

 @Bean
 public ProductService productService() {
 return new ProductService(inventoryService());
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/spring-in-action-fifth-edition

3

https://forums.manning.com/forums/spring-in-action-fifth-edition

The @Configuration annotation indicates to Spring that this class is a configuration
class which will provide beans to the Spring application context. The configuration
class' methods are annotated with @Bean indicating that the objects that they return
should be added as beans in the application context (where, by default, their respective
bean IDs will be the same as the names of the methods that define them).

Java-based configuration offers several benefits over XML-based configuration,
including greater type-safety and improved refactorability. Even so, explicit
configuration with either Java or XML is only necessary if Spring is unable to
automatically configure the components.

Automatic configuration has its roots in a Spring technique known as auto-wiring and
another technique known as component-scanning. With component-scanning, Spring
can automatically discover components from the application’s classpath and create
them as beans in the Spring application context. And using auto-wiring, Spring can
automatically inject them with other beans that they depend upon.

More recently, with the introduction of Spring Boot, automatic configuration has gone
well beyond component-scanning and auto-wiring. Spring Boot is an extension of the
Spring Framework that offers several productivity enhancements to Spring. The most
well-known of these enhancements is auto-configuration, where Spring Boot can make
reasonable guesses of what components need to be configured and wired together
based on entries in the classpath, environment variables, and other factors.

I’d like to show you some example code that demonstrates auto-configuration. But I
can’t. You see, auto-configuration is much like the wind. You can see the effects of it,
but there’s no code that I can show you and say "Look! Here’s an example of auto-
configuration!" Stuff happens, components are enabled, and functionality is provided
without writing code. It’s this lack of code that is essential to auto-configuration and
what makes it so wonderful.

Spring Boot auto-configuration has dramatically reduced the amount of explicit
configuration (whether with XML or Java) required to build an application. In fact, by
the time we finish the example in this chapter, you’ll have a working Spring
application that has only a single line of Spring configuration!

Spring Boot offers so much benefit to Spring development that it’s hard to imagine
developing Spring applications without it. For that reason, this book will treat Spring
and Spring Boot as if they were one-in-the-same. We’ll leverage Spring Boot as much
as possible and use explicit configuration only when it’s necessary. And, because
Spring XML configuration is the old-school way of working with Spring, we’ll focus
primarily on Spring’s Java-based configuration.

But enough of this chit-chat, yick-yack, and flim-flam. This book’s title includes the
phrase "in action", so let’s get moving and start writing our first application with
Spring.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/spring-in-action-fifth-edition

4

https://forums.manning.com/forums/spring-in-action-fifth-edition

1.2 Initializing a Spring application
Through the course of this book, we’re going to create Taco Cloud, an online
application for ordering the most wonderful food created by man: tacos. Of course,
we’re going to use Spring, Spring Boot, and a variety of related libraries and
frameworks to achieve this goal.

There are several options for initializing a Spring application. While I could walk you
through the steps of manually creating a project directory structure and defining a build
specification, that’s wasted time—time better spent actually writing application code.
Therefore, we’re going to lean on the Spring Initializr to bootstrap our application.

The Spring Initializr is both a browser-based web application as well as a REST API
that can produce a skeleton Spring project structure that you can flesh out with
whatever functionality you want. There are several ways to use Spring Initializr,
including the following:

• The web application at start.spring.io
• From the command line using the curl command
• From the command line using the Spring Boot Command Line Interface
• When creating a new project in Spring Tool Suite
• When creating a new project in IntelliJ IDEA
• When creating a new project in Netbeans

Rather than spend several pages of this chapter talking about each one of these options,
I’ve collected those details in Appendix A. In this chapter, and throughout this book,
I’m going to show how to create a new project using my favorite option, the Spring
Initializr support in Spring Tool Suite. As its name suggests, Spring Tool Suite is a
fantastic Spring development environment. But it also offers a handy Spring Boot
Dashboard feature that (at least at the time I write this) isn’t available in any of the
other IDE options.

If you’re not a Spring Tool Suite user, that’s fine and we can still be friends. Just hop
over to Appendix A and substitute the following instructions with those for the
Initializr option that suits you best. Just know that throughout this book, I may
occasionally reference features specific to Spring Tool Suite, such as the Spring Boot
Dashboard. If you’re not using Spring Tool Suite then you’ll need to adapt those
instructions to fit your IDE.

1.2.1 Initializing a Spring project in Spring Tool Suite

To get started with a new Spring project in Spring Tool Suite, go to the "File" menu
and select "New" and then "Spring Starter Project". Figure 1.2 shows the menu
structure to look for.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/spring-in-action-fifth-edition

5

http://start.spring.io/
https://forums.manning.com/forums/spring-in-action-fifth-edition

Figure 1.2. Starting a new project with the Intiializr in Spring Tool Suite.

Once you select "Spring Starter Project" a new project wizard dialog Figure 1.3 will
appear. The first page in the wizard asks you for some general project information,
such as the project name, description, and some other essential information. If you’re
familiar with the contents of a Maven pom.xml file, you’ll recognize most of the fields
as items that end up in a Maven build specification.

For the Taco Cloud application, fill in the dialog as shown in Figure 1.3 , then click
"Next >".

Figure 1.3. Specifying general project information.

The next page in the wizard offers you the chance to select dependencies to add to your
project (see Figure 1.4). Near the top of the dialog, you’ll notice that you have a chance

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/spring-in-action-fifth-edition

6

https://forums.manning.com/forums/spring-in-action-fifth-edition

to select which version of Spring Boot you want to base your project on. This defaults
to the most current version available and it’s generally a good idea to leave it as-is,
unless you need to target a different version.

As for the dependencies themselves, you can either expand the various sections and
seek out the desired dependencies manually, or search for them in the search box near
the top. For the Taco Cloud application, we’re going to start with the dependencies
shown in Figure 1.4

Figure 1.4. Choosing starter dependencies.

At this point you can just click "Finish" to generate the project and add it to your
workspace. But if you’re feeling slightly adventurous, click "Next >" one more time.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/spring-in-action-fifth-edition

7

https://forums.manning.com/forums/spring-in-action-fifth-edition

Figure 1.5. Optionally specifying an alternate Initializr address.

By default, this new project wizard makes a call out to the Spring Initializr
at start.spring.io to generate the project.

Generally, there’s no need to override this default, which is why you could have
clicked "Finish" on the 2nd page of the wizard. But if for some reason you’re hosting
your own clone of Intializr (perhaps a local copy on your own machine or a customized
clone running inside your company firewall), then you’ll want to change the "Base
Url" field to point at your Initializr instance before clicking "Finish".

After you click "Finish", the project will be downloaded from the Initializr and loaded
into your workspace. Wait a few moments to give it a chance to load and build and
then you’ll be ready to start developing the application functionality. But first, let’s
take a look at what the Initializr gave us.

1.2.2 Examining the Spring project structure

After the project has been loaded in the IDE, expand it to see what it contains.
 Figure 1.6 shows the expanded Taco Cloud project in Spring Tool Suite.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/spring-in-action-fifth-edition

8

http://start.spring.io/
https://forums.manning.com/forums/spring-in-action-fifth-edition

Figure 1.6. The initial Spring project structure as shown in Spring Tool Suite.

You may recognize this as a typical Maven or Gradle project structure, where
application source code is placed under src/main/java, test code is placed
under src/test/java, and non-Java resources are placed under src/main/resources.
Within that project structure, you’ll want to take note of the following items:

• mvnw and mvnw.cmd : These are Maven wrapper scripts. You can use these to build
your project even if you don’t have Maven installed on your machine.

• pom.xml : This is the Maven build specification. We’ll look deeper into this in a
moment.

• TacoCloudApplication.java : This is the Spring Boot main class that bootstraps
the project. We’ll take a closer look at this class in a moment.

• application.properties : This file is initially empty, but offers a place where
you can specify configuration properties. We’ll tinker with this file a little in this
chapter, but will defer a detailed explanation of configuration properties to chapter
5.

• static : This folder is where you can place any static content (images, stylesheets,
Javascript, etc) that you want to be able to serve to the browser. It is initially
empty.

• templates : This folder is where you’ll place template files that will be used to
render content to the browser. It’s initially empty, but we’ll add a Thymeleaf
template soon.

• TacoCloudApplicationTests.java : This is a very simple test class that ensures
that the Spring application context will load successfully. We’ll certainly add

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/spring-in-action-fifth-edition

9

https://forums.manning.com/forums/spring-in-action-fifth-edition

more tests to the mix as we develop the application.

As the Taco Cloud application grows, we’ll most certainly fill in this barebones project
structure with Java code, images, stylesheets, tests, and other collateral that will make
our project more complete. But in the meantime, let’s dig a little deeper into a few of
the items that Spring Initializr provided to us.

EXPLORING THE BUILD SPECIFICATION

When we filled out the form at start.spring.io, we specified that our project should be
built with Maven. Therefore, the Spring Initializr gave us a pom.xml file, already
populated with the choices we made. Listing 1.1 shows the entire pom.xml file
provided by the Initializr.

Listing 1.1. The initial Maven build specification.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>sia</groupId>
 <artifactId>taco-cloud</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging> ❶

 <name>taco-cloud</name>
 <description>Taco Cloud Example</description>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.0.0.M3</version> ❷
 <relativePath/> <!-- lookup parent from repository -->
 </parent>

 <properties>
 <project.build.sourceEncoding>
 UTF-8</project.build.sourceEncoding>
 <project.reporting.outputEncoding>
 UTF-8</project.reporting.outputEncoding>
 <java.version>1.8</java.version>
 </properties>

 <dependencies>
 <dependency> ❸
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-thymeleaf</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/spring-in-action-fifth-edition

10

https://start.spring.io/
http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd
https://forums.manning.com/forums/spring-in-action-fifth-edition

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-devtools</artifactId>
 <scope>runtime</scope>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin> ❹
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>

 <repositories>
 <repository>
 <id>spring-milestones</id>
 <name>Spring Milestones</name>
 <url>https://repo.spring.io/milestone</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>

 <pluginRepositories>
 <pluginRepository>
 <id>spring-milestones</id>
 <name>Spring Milestones</name>
 <url>https://repo.spring.io/milestone</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>

</project>

❶ JAR packaging
❷ Spring Boot version
❸ Starter dependencies
❹ Spring Boot plugin

The first noteworthy item in the pom.xml file is the <packaging> element. We chose to
build our application as an executable JAR file, as opposed to a WAR file. This is
probably one of the most curious choices we’ll make, especially for a web application.
After all, traditional Java web applications are packaged as WAR files, leaving JAR

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/spring-in-action-fifth-edition

11

https://repo.spring.io/milestone</url
https://repo.spring.io/milestone</url
https://forums.manning.com/forums/spring-in-action-fifth-edition

files the packaging of choice for libraries (and the occasional desktop user-interface
application).

The choice of JAR packaging is a cloud-minded choice. Whereas WAR files are
perfectly suitable for deploying to a traditional Java application server, they are an
unnatural fit for most cloud platforms. While some cloud platforms (such as
CloudFoundry) are capable of deploying and running WAR files, all Java cloud
platforms are capable of running an executable JAR file. Therefore, the Spring
Initializr will default to JAR packaging unless you tell it to do otherwise.

If you’ll need to deploy your application to a traditional Java application server, then
you’ll need to choose WAR packaging and include a web initializer class. We’ll look
at how to build WAR files in more detail in chapter 2.

Next, take note of the <parent> element and, more specifically, its <version> child.
This specifies that our project has spring-boot-starter-parent as its parent POM.
Among other things, this parent POM will provide dependency management for
several dependency libraries commonly used in Spring projects. For those libraries
covered by the parent POM, we will not have to specify a version, as it will be
inherited from the parent. The version, 2.0.0.RELEASE indicates that we’re using
Spring Boot 2.0.0 and thus will inherit dependency management as defined by that
version of Spring Boot.

While we’re on the subject of dependencies, you’ll see that there are three
dependencies declared under the <dependencies> element. The first two should look
somewhat familiar to you. They correspond directly to the "web" and "thymeleaf"
dependencies that we selected before clicking the "Finish" button in the Spring Tool
Suite new project wizard. The third dependency is one that provides a lot of helpful
testing capabilities. We didn’t have to check a box for it to be included because the
Spring Initializr will assume (hopefully correctly) that you will be writing tests.

You may also notice that all three dependencies have the word "starter" in their artifact
ID. Spring Boot starter dependencies are kind of special in that they typically don’t
have any library code themselves, but instead will transitively pull in other libraries.
These starter dependencies offer three primary benefits:

• Your build file will be significantly smaller and easier to manage because you
won’t need to declare a dependency on every library you might need.

• You are able to think of your dependencies in terms of what capabilities they
provide, rather than in terms of library names. If you’re developing a web
application, you add the web starter dependency, rather than a laundry list of
individual libraries that enable you to write a web application.

• You are freed from the burden of worry about library versions. You can trust that
for a given version of Spring Boot, the versions of the libraries brought in
transitively will be compatible. You only need to worry about which version of
Spring Boot you’re using.

Finally, the build specification ends with the Spring Boot plugin. This plugin performs

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/spring-in-action-fifth-edition

12

https://forums.manning.com/forums/spring-in-action-fifth-edition

a few important functions:

• It provides a Maven goal that will enable you to run the application using Maven.
We’ll try this goal out in section “Building and running the application”.

• It ensures that all dependency libraries are included within the executable JAR file
and available on the runtime classpath.

• It produces a manifest file in the JAR file that causes the bootstrap class
(TacoCloudApplication in our case) is the main class for the executable JAR.

Speaking of the bootstrap class, let’s open it up and take a closer look.

BOOTSTRAPPING THE APPLICATION

Since we’ll be running the application from an executable JAR, it’s important to have a
main class that will be executed when that JAR file is run. We’ll also need at least a
minimal amount of Spring configuration to bootstrap the application. That’s what
you’ll find in the TacoCloudApplication class, shown in Listing 1.2 .

Listing 1.2. The Taco Cloud bootstrap class.

package tacos;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication ❶
public class TacoCloudApplication {

 public static void main(String[] args) {
 SpringApplication.run(TacoCloudApplication.class, args); ❷
 }

}

❶ This is a Spring Boot application
❷ Run the application

Although there’s very little code in TacoCloudApplication, what’s there packs quite a
punch. One of the most powerful lines of code is also one of the shortest lines of code.
The @SpringBootApplicationannotation clearly signifies that this is a Spring Boot
application. But there’s more to @SpringBootApplication than meets the eye.

@SpringBootApplication is a composite application that combines three other
annotations:

• @SpringBootConfiguration - Designates this class as a configuration class.
Although there’s not much configuration in the class at this time, we can add Java-
based Spring Framework configuration to this class if we need to. This annotation
is, in fact, a specialized form of the @Configuration annotation.

• @EnableAutoConfiguration - Enables Spring Boot automatic configuration. We’ll
talk more about auto-configuration later. For now just know that this annotation

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/spring-in-action-fifth-edition

13

https://forums.manning.com/forums/spring-in-action-fifth-edition

tells Spring Boot to automatically configure any components that it thinks we
need.

• @ComponentScan - Enables component scanning. This lets us declare other classes
with annotations like @Component, @Controller, @Service, and others to have
Spring automatically discover them and register them as components in the Spring
application context.

The other important piece of TacoCloudApplication is the main() method. This is the
method that will be run when the executable JAR file is run. For the most part, this
method is boilerplate code; every Spring Boot application you write will have a
method very similar or identical to this one (class name differences notwithstanding).

The main() calls a static run() method on the SpringApplication class which
performs the actual bootstrapping of the application, creating the Spring application
context. The two parameters passed to the run() method are a configuration class and
the command line arguments. Although it’s not necessary that the configuration class
passed to run() be the same as the bootstrap class, this is the most convenient and
typical choice.

Chances are you won’t ever need to change anything in the bootstrap class. For simple
applications, you might find it convenient to configure one or two other components in
the bootstrap class, but for most applications you’re better off creating a separate
configuration class for anything that isn’t auto-configured. We’ll be defining several
configuration classes throughout the course of this book, so stay tuned for details.

TESTING THE APPLICATION

Testing is a very important part of software development. Recognizing this, the Spring
Initializr has given us a test class to get started. Listing 1.3 shows the baseline test
class.

Listing 1.3. A baseline application test.

package tacos;

import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner;

@RunWith(SpringRunner.class) ❶
@SpringBootTest ❷
public class TacoCloudApplicationTests {

 @Test ❸
 public void contextLoads() {
 }

}

❶ Use the Spring runner

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/spring-in-action-fifth-edition

14

https://forums.manning.com/forums/spring-in-action-fifth-edition

❷ This is a Spring Boot test
❸ The test method

There’s not much to be seen in TacoCloudApplicationTests. Even the one test method
in the class is empty. Even so, this test class does perform an essential check to be sure
that the Spring application context can be loaded successfully. If we make any changes
that prevent the Spring application context from being created, this test will fail and we
can react by trying to fix the problem.

The class annotated with @RunWith(SpringRunner.class). @RunWith is a JUnit
annotation which provides a test runner that guides JUnit in running a test. Think of it
as applying a plugin to JUnit to provide custom testing behavior. In this case, it is
given SpringRunner, which is a Spring-provided test runner that provides for the
creation of a Spring application context that the test will run against.

Note A test runner by any other name…

If you’re already familiar with writing Spring tests or are maybe looking at some existing Spring-
based test classes, you may have seen a test runner
named SpringJUnit4ClassRunner. SpringRunner is an alias
for SpringJUnit4ClassRunner that was introduced in Spring 4.3 to remove the association
with a specific version of JUnit (e.g., JUnit 4). And there’s no denying that it’s easier to read and
type.

The @SpringBootTest tells JUnit to bootstrap the test with Spring Boot capabilities.
For now, it’s enough to think of this as the test class equivalent of
calling SpringApplication.run() in a main() method. Over the course of this book,
we’ll see @SpringBootTest several times and uncover some of it’s power.

Finally, there’s the test method itself.
While @RunWith(SpringRunner.class) and @SpringBootTest are tasked to load the
Spring application context for the test, they won’t have anything to do if there aren’t
any test methods. Even without any assertions or code of any kind, this empty test
method will prompt the two annotations to do their job and load the Spring application
context. If there are any problems in doing so, the test will fail.

At this point, we’ve concluded our review of the code provided by the Spring Initializr.
We’ve seen some of the boilerplate foundation that we can develop a Spring
application on, but we still haven’t written a single line of code for ourselves. Now it’s
time to fire up your IDE and dust off your keyboard and add some custom code to the
Taco Cloud application.

1.3 Writing a Spring application
Since we’re just getting started, we’re going to start off with a relatively small change
to the Taco Cloud application, but one that will demonstrate a lot of Spring goodness.
It seems appropriate that as we are just starting out, the first feature we should add to
the Taco Cloud application is a home page.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/spring-in-action-fifth-edition

15

https://forums.manning.com/forums/spring-in-action-fifth-edition

As we add the home page, we’re going to create two code artifacts:

• A controller class that handles requests for the home page.
• A view template that will define what the home page looks like.

And because testing is important, we’ll also write a simple test class to test the home
page.

But first things first…let’s write that controller.

1.3.1 Handling web requests

Spring comes with a powerful web framework known as Spring MVC. At the center of
Spring MVC is the concept of a controller, a class that handles requests and responds
with information of some sort. In the case of a browser-facing application, a controller
responds by optionally populating model data and passing the request on to a view to
produce HTML that is returned to the browser.

We’re going to learn a lot about Spring MVC in chapter 2. But for now, we’re just
going to write a simple controller class that handles requests for the root path (e.g., /)
and forwards those requests to the home page view without populating any model data.
 Listing 1.4 shows our simple controller class.

Listing 1.4. The home page controller

package tacos;

import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.GetMapping;

@Controller ❶
public class HomeController {

 @GetMapping("/") ❷
 public String home() {
 return "home"; ❸
 }

}

❶ This is a controller
❷ Handle requests for "/"
❸ Return the view name

As you can see, this class is annotated with @Controller. On its
own, @Controller doesn’t do much. Its primary purpose in this class is to identify this
class as a component for purposes of component-scanning. That is to say that
because HomeController is annotated with @Controller, Spring component-scanning
will automatically discover it and create an instance of HomeController as a bean in
the Spring application context.

There are, in fact, a handful of other annotations that serve a similar purpose
©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and

other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/spring-in-action-fifth-edition

16

https://forums.manning.com/forums/spring-in-action-fifth-edition

to @Controller, including @Component, @Service, and @Repository. We could have
just as effectively annotated HomeControllerwith any of those other annotations and it
would have still worked the same. The choice of @Controller is, however, more
descriptive of this component’s role in the application.

The home() method is as simple as controller methods come. It is annotated
with @GetMapping to indicate that if an HTTP GET request is received for "/", then this
method should handle that request. It does so by doing nothing more than returning
a String value of "home".

This value is interpreted as the logical name of a view. How that view is implemented,
depends on a few factors, but since we have Thymeleaf in our classpath, we can define
that template with Thymeleaf.

Note Why Thymeleaf?

You may be wondering why I chose Thymeleaf for a template engine? Why not JSP? Why not
Freemarker? Why not one of several other options?

Put simply, I had to choose something and I like Thymeleaf and generally prefer it over those
other options. And even though JSP may seem like an obvious choice, there are some
challenges to overcome when using JSP with Spring Boot and I didn’t want to go down that
rabbit hole in chapter 1.

Hang tight. We’ll look at other template options, including JSP, in chapter 2.

The template’s name is derived from the logical view name by prefixing it with
"/templates/" and postfixing it with ".html". The resulting path for the template is
"/templates/home.html". Therefore, we’ll need to place the template in our project at
`/src/main/resources/templates/home.html'. Let’s create that template now.

1.3.2 Defining the view

In the interest of keeping our home page simple, I’ve decided it should do nothing
more than welcome users to the site. Listing 1.5 shows the basic Thymeleaf template
that defines the Taco Cloud home page.

Listing 1.5. The Taco Cloud home page template.

<!DOCTYPE html>
<html
 xmlns:th="http://www.thymeleaf.org">
 <head>
 <title>Taco Cloud</title>
 </head>

 <body>
 <h1>Welcome to...</h1>

 </body>
</html>

There’s not much to discuss with regard to this template. The only notable line of code
©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and

other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.
https://forums.manning.com/forums/spring-in-action-fifth-edition

17

http://www.thymeleaf.org
https://forums.manning.com/forums/spring-in-action-fifth-edition

is the one with the tag to display the Taco Cloud logo. It uses a
Thymeleaf th:src attribute and an @{…}expression to reference the image with a
context-relative path. Aside from that, it’s not much more than a "Hello World" page.

But let’s talk about that image a bit more. I’ll leave it up to you to define a Taco Cloud
logo that you like. You’ll just need to make sure you place it at the right place within
the project.

The image is referenced with a context-relative path of "/images/TacoCloud.png". As
you’ll recall from our review of the project structure, static content such as images are
to be kept in /src/main/resources/static. That means that our Taco Cloud logo
image must reside within our project
at /src/main/resources/static/images/TacoCloud.png.

Now that we have a controller to handle requests for the home page and a view
template to render the home page, we’re almost ready to fire up the application and see
it in action. But first, let’s see how we can write a test against the controller.

1.3.3 Testing the controller

Testing web applications can be tricky, especially when making assertions against the
content of an HTML page. Fortunately, Spring comes with some powerful test support
that makes testing a web application easy.

For the purposes of the home page, we’ll write a test that’s comparable in complexity
to the home page itself. Our test will simply perform an HTTP GET request for "/" and
expect a successful result where the view name is "home" and that the resulting content
contains the phrase "Welcome to…". Listing 1.6 should do the trick.

Listing 1.6. A test for the home page controller.

package tacos;

import static org.hamcrest.Matchers.containsString;
import static
org.springframework.test.web.servlet.request.MockMvcRequestBuilders.get;
import static
org.springframework.test.web.servlet.result.MockMvcResultMatchers.content;
import static
org.springframework.test.web.servlet.result.MockMvcResultMatchers.status;
import static
org.springframework.test.web.servlet.result.MockMvcResultMatchers.view;

import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.autoconfigure.web.servlet.WebMvcTest;
import org.springframework.test.context.junit4.SpringRunner;
import org.springframework.test.web.servlet.MockMvc;

@RunWith(SpringRunner.class)
@WebMvcTest(HomeController.class) ❶
public class HomeControllerTest {

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/spring-in-action-fifth-edition

18

https://forums.manning.com/forums/spring-in-action-fifth-edition

 @Autowired
 private MockMvc mockMvc; ❷

 @Test
 public void testHomePage() throws Exception {
 mockMvc.perform(get("/")) ❸

 .andExpect(status().isOk()) ❹

 .andExpect(view().name("home")) ❺

 .andExpect(content().string(❻
 containsString("Welcome to...")));
 }

}

❶ Web test for HomeController
❷ Inject MockMvc
❸ Perform GET /
❹ Expect HTTP 200
❺ Expect "home" view
❻ Expect "Welcome to…"

The first thing you might notice about this test is that it differs slightly from
the TacoCloudApplicationTests class with regard to the annotations applied to it.
Instead of a @SpringBootTest annotation, HomeControllerTest is annotated
with @WebMvcTest. This annotation is a special test annotation provided by Spring Boot
that arranges for the test to run in the context of a Spring MVC application. More
specifically, in this case, it arranges for HomeController to be registered in Spring
MVC so that we can throw requests against it.

@WebMvcTest also sets up Spring’s support for testing Spring MVC. Although it could
be made to start an actual server, mocking the mechanics of Spring MVC is sufficient
for our purposes. The test class is injected with a MockMvc object for the test to drive
the mock.

The testHomePage() method defines the test we want to perform against the home
page. It starts by the MockMvc object to perform an HTTP GET request for "/". And from
that request, it sets the following expectations:

• The response should have an HTTP 200 (OK) status.
• The view should have a logical name of "home".
• The rendered view should contain the text "Welcome to…"

If, after performing the request, any of those expectations are not met, then the test will
fail. But our controller and view template are written to satisfy those expectations, so
the test should pass with flying colors—or at least with some shade of green indicating
a passing test.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/spring-in-action-fifth-edition

19

https://forums.manning.com/forums/spring-in-action-fifth-edition

The controller has been written, the view template created, and we have a passing test.
It seems that we’ve implemented the home page successfully. But even though our test
passes, there’s something slightly more satisfying with seeing the results in a browser.
After all, that’s how Taco Cloud customers are going to see it. So let’s build the
application and run it.

1.3.4 Building and running the application

Just as there are several ways to initialize a Spring application, there are several ways
to run a Spring application. You can flip over to Appendix A to read about some of the
more common ways to run a Spring Boot application.

Since I chose to use Spring Tool Suite to initialize and work on the project, I have a
handy feature called the Spring Boot Dashboard available to help me run my
application inside of the IDE. The Spring Boot Dashboard appears as a tab, typically
near the bottom left of the IDE window. Figure 1.7 shows an annotated screenshot of
the Spring Boot Dashboard.

Figure 1.7. Highlights of the Spring Boot Dashboard.

I don’t want to spend much time going over everything that the Spring Boot Dashboard
does, although Figure 1.7 covers some of the most useful details. The important thing
to know right now is how to use it to run the Taco Cloud application. Just make sure
that the "taco-cloud" application is highlighted in the list of projects (it’s the only

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/spring-in-action-fifth-edition

20

https://forums.manning.com/forums/spring-in-action-fifth-edition

application shown in Figure 1.7) and then click the start button (the left-most button
with both a green triangle and a red square). The application should start right up.

As the application starts up, you’ll see some Spring ASCII-art fly by in the console,
followed by some log entries describing the steps as the application starts up. Just
before the logging stops, you’ll see a log entry saying "Tomcat started on port(s): 8080
(http)", which means that we’re ready to point our web browser at the home page to see
the fruits of our labor.

Wait a minute. Tomcat started? When did we deploy the application to Tomcat?

Spring Boot applications tend to bring everything they need with them and don’t need
to be deployed to some application server. We never deployed our application to
Tomcat…Tomcat is a part of our application! (I’ll describe the details of how Tomcat
became part of our application in section “Let’s review”.)

Now that the application has started, just point your web browser to localhost:8080 (or
click the globe button in the Spring Boot Dashboard) and you should see something
like Figure 1.8 .

Figure 1.8. The Taco Cloud home page

Your results may be different if you designed your own logo image. But it shouldn’t
vary much from what you see in Figure 1.8 .

It may not be much to look at. But this isn’t exactly a book on graphic design. The
humble appearance of the home page is more than sufficient for now. And it provided
us a solid start on getting to know Spring.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/spring-in-action-fifth-edition

21

http://localhost:8080/
https://forums.manning.com/forums/spring-in-action-fifth-edition

One thing I’ve glossed over up until now is DevTools. We selected it as a dependency
when intializing our project. It appears as a dependency in the produced pom.xml file.
And the Spring Boot Dashboard even shows that the project has DevTools enabled.
But what is DevTools and what does it do for us? Let’s take a quick survey of a couple
of DevTools' most useful features.

1.3.5 Getting to know Spring Boot DevTools

As its name suggests, DevTools provides Spring developers with some handy
development-time tools. Among those are:

• Automatic application restart when code changes.
• Automatic browser refresh when browser-destined resources (such as templates,

JavaScript, stylesheets, etc) change.
• Automatic disable of template caches.
• Built in H2 Console if the H2 database is in use.

It’s important to understand that DevTools isn’t an IDE plugin, nor does it require that
you use a specific IDE. It works equally well in Spring Tool Suite, IntelliJ IDEA, and
Netbeans. Furthermore, because it is only intended for development purposes, it’s
smart enough to disable itself when deploying in a production setting. (We’ll discuss
how it does this when we get around to deploying our application in chapter 17.)

For now, let’s focus on the most useful features of Boot DevTools, starting with
automatic application restart.

AUTOMATIC APPLICATION RESTART

With DevTools as part of your project, you’ll be able to make changes to Java code
and properties files in the project and see those changes applied after a brief moment.
DevTools monitors for changes and when it sees something has changed, it will
automatically restart the application.

More precisely, when DevTools is in play, the application is loaded into two separate
class loaders in the Java virtual machine (JVM). One class loader is loaded with your
Java code, property files, and pretty much anything that’s in the src/main/ path of the
project. These are items that are likely to change frequently. The other class loader is
loaded with dependency libraries, which are not as likely to change often.

When a change is detected, DevTools reloads only the classloader containing your
project’s code and restarts the Spring application context, but leaves the other class
loader and the JVM intact. Although subtle, this strategy affords a small reduction in
the time that the application starts.

The downside of this strategy is that changes to dependencies will not be available in
automatic restarts. That’s because the class loader containing dependency libraries is
not automatically reloaded. This means that any time you add, change, or remove a
dependency in your build specification, you’ll need to do a hard restart of the
application for those changes to take effect.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/spring-in-action-fifth-edition

22

https://forums.manning.com/forums/spring-in-action-fifth-edition

AUTOMATIC BROWSER REFRESH AND TEMPLATE CACHE DISABLE

By default, template options such as Thymeleaf and Freemarker are configured to
cache the results of template parsing so that the templates don’t need to be reparsed
with every request that they serve. This is great in production, as it buys a little bit of
performance benefit.

Cached templates, however, are not so great at development time. Cached templates
make it impossible to make changes to the templates while the application is running
and see the results after refreshing the browser. Even if you’ve made changes, the
cached template will still be in use until you restart the application.

DevTools addresses this issue by automatically disabling all template caching. Make as
many changes as you want to your templates and know that you’re only a browser
refresh away from seeing the results.

But if you’re like me, you don’t even want to be burdened with the effort of clicking
the browser’s refresh button. It’d be much nicer if you could simply make the changes
and witness the results in the browser immediately. Fortunately, DevTools has
something special for those of us who are too lazy to click a refresh button.

When DevTools is in play, it automatically enables a LiveReload2 server along with
your application. By itself, the LiveReload server isn’t very useful. But when coupled
with a corresponding LiveReload browser plugin, it can cause your browser to
automatically refresh when changes are made to templates, images, stylesheets,
JavaScript…almost anything that ends up being served to your browser.

LiveReload has browser plugins for Google Chrome, Safari, and Firefox browsers.
(Sorry Internet Explorer fans.) Visit livereload.com/extensions/ to find information on
how to install LiveReload for your browser.

BUILT IN H2 CONSOLE

Although our project doesn’t yet leverage a database, that will change soon in chapter
3. If you choose to use the H2 database for development, DevTools will also
automatically enable an H2 Console that you can access from your web browser. You
only need to point your web browser to localhost:8080/h2-console to gain insight into
the data your application is working with.

At this point, we’ve written a complete, albeit simple, Spring application. We’ll
expand on it throughout the course of the book. But now is a good time to step back
and review what we have accomplished and how Spring played a part.

1.3.6 Let’s review

Think back on how we got to this point. In short, these are the steps we’ve taken to
build our Spring-based Taco Cloud application:

1. We created an initial project structure using Spring Initializr.

2 livereload.com/

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/spring-in-action-fifth-edition

23

http://livereload.com/extensions/
http://localhost:8080/h2-console
http://livereload.com/
https://forums.manning.com/forums/spring-in-action-fifth-edition

2. We wrote a controller class to handle the home page request.
3. We defined a view template to render the home page.
4. We wrote a simple test class to prove out our work.

Seems pretty straightforward, doesn’t it? With the exception of the first step to
bootstrap the project, each action we’ve taken has been keenly focused on achieving
the goal of producing a home page.

In fact, almost every line of code we’ve written is aimed toward that same goal. Not
counting Java import statements, I count only 2 lines of code in our controller class
that are specific to Spring and no lines in the view template that are Spring specific.
And while the bulk of the test class utilizes Spring’s testing support, it seems a little
less invasive in the context of a test.

That’s an important benefit of developing with Spring. You can focus on the code that
meets the requirements of an application rather than on satisfying the demands of a
framework. Although you’ll no doubt need to write some framework-specific code
from time to time, it will usually be only a small fraction of your codebase. As I said
before, Spring (with Spring Boot) can be considered the "framework-less framework".

So how does this even work? What is Spring doing behind the scenes to make sure that
your application’s needs are met?

To understand what Spring is doing, let’s start by looking at the build specification. In
the pom.xml file, we declared a dependency on the "web" and "thymeleaf" starters.
These two dependencies transitively brought in a handful of other dependencies,
including:

• Spring’s MVC framework
• Embedded Tomcat
• Thymeleaf and the Thymeleaf layout dialect

It also brings Spring Boot’s auto-configuration library along for the ride. When the
application starts up, Spring Boot auto-configuration detects those libraries and
automatically…

• …configures the beans in the Spring application context to enable Spring MVC.
• …configures the embedded Tomcat server in the Spring application context.
• …configures a Thymeleaf view resolver for rendering Spring MVC views with

Thymeleaf templates.

In short, auto-configuration does all of the grunt work, leaving you to focus on writing
code implements your application’s functionality.

That’s a pretty sweet arrangement if you ask me!

Our Spring journey has just begun. The Taco Cloud application has only touched on a
small portion of what Spring has to offer. Before we take our next step, let’s survey the
Spring landscape and see what landmarks we’ll encounter on our journey./

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/spring-in-action-fifth-edition

24

https://forums.manning.com/forums/spring-in-action-fifth-edition

1.4 Surveying the Spring landscape
To get an idea of what the Spring landscape looks like, you can look no further than
the enormous list of checkboxes on the full version of the Spring Initializr’s web form.
There are over 100 dependency choices listed, so I won’t even bother trying to list
them all here or provide a screenshot. But I encourage you to take a look. In the
meantime, I’ll mention of few of the highlights.

1.4.1 The Core Spring Framework

As you might expect, the core Spring Framework is the foundation of everything else
in the Spring universe. It provides the core container and dependency injection
framework. But it also provides a few other essential features.

Among those is Spring MVC, Spring’s web framework. We’ve already seen how to
use Spring MVC to write a controller class to handle web requests. What you’ve not
seen yet, however, is that Spring MVC can also be used create REST APIs that
produce non-HTML output. We’re going to dig more into Spring MVC in chapter 2
and then take another look at how to use it to create REST APIs in chapter 6.

The core Spring Framework also offers some elemental data persistence support,
specifically template-based JDBC support. We’ll see how to use JdbcTemplate in
chapter 3.

In the most recent version of Spring (5.0.0), Spring has added support for reactive style
programming, including a new reactive web framework called Spring WebFlux that
borrows heavily from Spring MVC. We’ll look at Spring’s reactive programming
model in Part 3 and Spring WebFlux specifically in chapter 10.

1.4.2 Spring Boot

We’ve already seen many of the benefits of Spring Boot, including starter
dependencies and auto-configuration. Be certain that we’ll leverage as much of Spring
Boot as possible throughout this book and avoid any form of explicit configuration
unless it’s absolutely necessary.

But in addition to starter dependencies and auto-configuration, Spring Boot also offers
a handful of other useful features:

• The Actuator provides runtime insight into the inner workings of an application,
including metrics, thread dump information, application health, and environment
properties available to the application.

• Flexible specification of environment properties.
• Additional testing support on top of testing support found in the core framework.

What’s more, Spring Boot offers an alternative programming model based on Groovy
scripts called the Spring Boot CLI (Command Line Interface). With the Spring Boot
CLI, you can write entire applications as a collection of Groovy scripts and run them
from the command line. We won’t spend much time with the Spring Boot CLI, but we
will touch upon it on occasion when it befits our needs.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/spring-in-action-fifth-edition

25

https://forums.manning.com/forums/spring-in-action-fifth-edition

Spring Boot has become such an integral part of Spring development and I can’t
imagine developing a Spring application without it. Consequently, this book will take a
very Spring Boot-centric view and you might catch me using the work "Spring" when I
am referring to something that Spring Boot is doing.

1.4.3 Spring Data

Although the core Spring Framework comes with basic data persistence support,
Spring Data provides something that is quite amazing: The ability to define your
application’s data repositories as simple Java interfaces, using a naming convention
when defining methods to drive how data is stored and retrieved.

What’s more, Spring Data is capable of working with a several different kinds of
databases, including relational (JPA), document (Mongo), graph (Neo4j), and others.

We’ll leverage Spring Data to help create repositories for the Taco Cloud application
in chapter 3.

1.4.4 Spring Security

Application security has always been an important topic, and it seems to become more
important every day. Fortunately, Spring has a robust security framework in Spring
Security.

Spring Security addresses a broad range of application security needs, including
authentication, authorization, and API security.

Although the scope of Spring Security is too large to be properly covered in this book,
we’ll touch on some of the most common use cases in chapters 4 and 12.

1.4.5 Spring Integration and Spring Batch

At some point, most applications will need to integrate with other applications or even
with other components of the same application. There are several patterns of
application integration that have emerged to address these needs. Spring Integration
and Spring Batch provide the implementation of these patterns for Spring-based
applications.

Spring Integration addresses real-time integration, where data is processed as it is made
available. In contrast, Spring Batch addresses batched integration where data is
allowed to collect for a time until some trigger (perhaps a time trigger) signals that it is
time for the batch of data to be processed.

We’ll explore both Spring Batch and Spring Integration in chapter 8.

1.4.6 Spring Cloud

As I’m writing this, the application development world is entering a new era where we
will no longer develop our applications as single deployment unit monoliths and will
instead compose applications from several individual deployment units known as
microservices.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/spring-in-action-fifth-edition

26

https://forums.manning.com/forums/spring-in-action-fifth-edition

Microservices are a hot topic and they do address several practical development and
runtime concerns. In doing so, however, they bring to fore their own challenges. Those
challenges are met head-on by Spring Cloud, a collection of projects for developing
cloud-native applications with Spring.

Spring Cloud covers a lot of ground and it’d be impossible to cover it all in this book.
We will look at some of the most common components of Spring Cloud in chapters 13,
14, and 15. For a more complete discussion of Spring Cloud, I suggest taking a look
at Spring Microservices in Action by John Carnell3 .

1.5 Summary
• Spring aims to make make developer challenges—such as creating web

applications, working with databases, securing applications, and microservices—
easy.

• Spring Boot builds on top of Spring to make Spring even easier with simplified
dependency management, automatic configuration, and runtime insights.

• Spring applications can be initialized using the Spring Initializr, which is web-
based and supported natively in most Java development environments.

• The components, commonly referred to as beans, in a Spring application context
can be declared explicitly with Java or XML, discovered by component-scanning,
or automatically configured with Spring Boot auto-configuration.

3 www.manning.com/books/spring-microservices-in-action

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/spring-in-action-fifth-edition

27

https://www.manning.com/books/spring-microservices-in-action
https://forums.manning.com/forums/spring-in-action-fifth-edition

	Spring in Action, Fifth Edition: Covers Spring 5.0 MEAP V04
	Copyright
	Welcome
	Brief contents
	Chapter 1: Booting Spring
	1.1 What is Spring?
	1.2 Initializing a Spring application
	1.2.1 Initializing a Spring project in Spring Tool Suite
	1.2.2 Examining the Spring project structure

	1.3 Writing a Spring application
	1.3.1 Handling web requests
	1.3.2 Defining the view
	1.3.3 Testing the controller
	1.3.4 Building and running the application
	1.3.5 Getting to know Spring Boot DevTools
	1.3.6 Let’s review

	1.4 Surveying the Spring landscape
	1.4.1 The Core Spring Framework
	1.4.2 Spring Boot
	1.4.3 Spring Data
	1.4.4 Spring Security
	1.4.5 Spring Integration and Spring Batch
	1.4.6 Spring Cloud

	1.5 Summary

